Incubation temperature and energy expenditure during development in loggerhead sea turtle embryos

Karen A. Reid a,⁎, Dimitris Margaritoulis b, John R. Speakman a

a Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2IZ, Scotland
b ARCHELON, the Sea Turtle Protection Society of Greece, Solomou 57, GR-10432 Athens, Greece

Abstract

The choice of a suitable nest habitat by oviparous reptiles that deposit eggs into a nest and provide no subsequent parental care is likely to play a major role in the survival of the offspring. In particular variations in nest temperature may influence the rate at which embryos utilise their yolk energy. The effects of nest temperature on total energy use are however complex. High temperatures may advance development and shorten the time to hatching, thereby reducing energy use, but they also stimulate metabolic rate increasing energy use. The net effect of temperature on total energy demands is therefore uncertain.

Oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured by open-flow respirometry during the incubation of loggerhead sea turtle eggs at three temperatures (27.6, 30.0 and 31.8 °C). At each temperature, VO2 and VCO2 showed a peak followed by a decline to hatching. Incubation temperature was negatively related to incubation duration and positively related to the maximum metabolic rate of the embryos. Peak VO2 was 74.8 ml/egg/day at 27.6 °C, 91.9 ml/egg/day at 30.0 °C, and 97.9 ml/egg/day at 31.8 °C. Peak VO2 occurred closer to hatching in eggs incubated at higher temperatures. Total energy expenditure was greatest at the lowest incubation temperature and lowest at the highest temperature. Total VO2 and VCO2 were 1777 ml/egg and 1226 ml/egg, respectively, at 27.6 °C, 1680 ml/egg and 1235 ml/egg at 30.0 °C, and 1613 ml/egg and 1191 ml/egg at 31.8 °C. Using the actual RQ values, this corresponds to a cost of development of 34,963 J/egg at 27.6 °C, 33,403 J/egg at 30.0 °C, and 32,107 J/egg at 31.8 °C. At all temperatures, the calculated respiratory quotient values did not suggest that yolk substrates were oxidised proportionately, but more likely indicated their sequential use. Nest temperatures may play a key role in energy use, with cooler temperature nests increasing the overall energy demands placed on developing embryos.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In eutherian mammals, developing embryos behave as part of the maternal body and have similar metabolic rates (Kleiber, 1987). In birds, embryonic metabolism is determined partly by incubation temperature, regulated by the attending parent (Vleck and Hoyt, 1991). In contrast, the embryos of oviparous reptiles undertake variable proportions of development outside the maternal body, frequently unattended (Shine, 1991). Developmental rates are thus strongly influenced by conditions experienced at the nest site (Deeming and Ferguson, 1991; Packard, 1991; Vleck and Hoyt, 1991).

Theoretical models describing the energetic costs of embryonic development divide energy consumption into two components, the cost of new tissue synthesis and the cost of maintaining existing embryonic tissue (Vleck et al., 1980). These costs are fuelled by the production of adenosine triphosphate (ATP), obtained in reptiles through the oxidation of yolk substrates during the course of respiration. Energy expenditure can therefore be quantified through the measurement of oxygen consumption (VO2) and carbon dioxide production (VCO2). The caloric value of 1 l of consumed oxygen can be calculated through the use of energy equivalent conversion factors, the values of which reflect the nature of the substrate oxidised. Although standard values may be used (e.g. Booth and Astill, 2001), it is also possible to calculate the conversion factors from respiratory quotients (RQ), determined by the ratio of VCO2/VO2. From the RQ, the oxidation substrate (carbohydrate, protein or fat) can also be inferred (Schmidt-Nielsen, 1977). Assuming a standard or average energy equivalent presumes that yolk components are metabolised proportionately throughout incubation (Gettinger et al., 1984), which may not be true for all reptiles (Thompson and Stewart, 1997).

Variation in the incubation duration of developing reptiles is primarily determined by temperature (Deeming and Ferguson, 1991; Godfrey and Mrosovsky, 2001). In embryos of the loggerhead sea turtle Caretta caretta, a 1 °C rise in constant incubation temperature approximates to a reduction in incubation duration of about 8.5 days.
in natural nests (Mrosovsky, 1980). Within the optimal range, the positive effects of temperature on rate constants mean embryonic development proceeds more quickly at higher temperatures, resulting in shorter incubation durations and higher rates of embryonic metabolism, due to higher biosynthesis and maintenance costs (Vleck and Hoyt, 1991). Conversely, embryos incubating at lower temperatures experience extended incubation durations with lower levels of metabolism. In the green turtle Chelonia mydas, the outcome of this trade-off between the rate of metabolism and the duration of incubation is that embryos incubating at different temperatures expend similar amounts of energy during development (Booth and Astill, 2001). However, in birds, longer incubation durations are associated with higher costs of development (Vleck and Hoyt, 1991), and in freshwater turtles, higher costs are incurred at incubation temperatures close to the range limits (Booth, 1998a). If energetic costs of development are higher, the size of the energy store available to support the newly emerged hatching may be reduced. In sea turtles, this may be detrimental due to the high metabolic demands associated with hatching, emergence and dispersal (Kraemer and Bennett, 1981; Baldwin et al., 1989; Wynenken and Salmon, 1992; Clussella Trullas et al., 2006).

Three different patterns of oxygen consumption have been described during embryonic development in reptiles. Snakes typically show an exponential increase (Dmi'el, 1970), lizards show either a sigmoidal or a peaked pattern (Vleck and Hoyt, 1991; Birchard et al., 1995; Thompson and Stewart, 1997; Booth et al., 2000), and crocodilians show a peaked pattern (Whitehead and Seymour, 1990). Previous studies have drawn attention to the fact that both green turtles from Heron Island and leatherback sea turtles Dermochelys coriacea exhibit a peaked pattern of embryonic metabolism, where VO₂ first increases but then declines towards hatching (Booth and Astill, 2001; Thompson, 1993). This pattern also occurs in some freshwater turtles (Gettinger et al., 1984; Webb et al., 1986). However, Atlantic loggerhead turtles do not exhibit such a pronounced peak (Ackerman, 1981a), with oxygen consumption following a sigmoidal pattern demonstrated by a reduction in the rate of increase in VO₂ close to hatching. It is therefore possible that interspecific differences in these patterns exist.

Understanding the micro-environmental factors which influence hatching success and hatching survival can further our knowledge of the habitat requirements for successful sea turtle reproduction. From an evolutionary perspective, the effects of temperature on the sea turtle embryogenesis are of particular interest, as a number of phenotypic variation (range 43–67 days; Margaritoulis et al., 2003), associated with variability in ambient temperatures (Rees and Margaritoulis, 2004). By artificially incubating eggs at three temperatures within the range typical of this population, we aimed to determine the effects of temperature on metabolic rate, and to consider whether biologically significant differences in the energetic costs of embryogenesis occurred.

2. Material and methods

2.1. Egg incubation

Eggs were incubated at three temperatures; 27.6 °C, 30.0 °C and 31.8 °C. Each incubator contained 3 boxes (hereafter referred to as Box 1, 2 or 3) of 10 eggs, thus enabling replication of measurements within each temperature treatment. During the 2002 nesting season, 60 eggs were collected from a clutch laid on 9th August, and 30 eggs from a second clutch laid on 11th August. Eggs were removed from the nests at around 10 am on the morning after they were laid (Permit No. 105402/4148, Greek Ministry of Agriculture), and transported in a foam-lined box by air-conditioned car to the incubators. Within each incubator there were 3 separate boxes of 10 eggs. Each temperature treatment contained 2 boxes of 10 eggs from the first clutch and 1 box of 10 eggs from the second clutch.

The basic method of egg incubation was similar to Method 2 detailed in McLean et al. (1983). Eggs were brushed free of sand and weighed to the nearest 0.01 g on an electronic balance (PT 150, Sartorius, Gottingen, Germany). Ten eggs were set in each tupperware box (dimensions 350 × 250 × 100 mm) on a double layer of 10 mm thick foam. The box lids contained 20 ventilation holes (2 mm diameter) and boxes and foam had been previously cleaned with distilled water. The eggs were then packed with vermiculite (Silvapearl horticultural grade), which had been pre-soaked in distilled water and squeezed to remove excess water until a moist and crumbly texture was achieved. The top third of the eggs were left uncovered.

Incubators were constructed using 3 water baths (dimensions 310 × 620 × 290 mm, Grant Instruments, Cambridge, UK). A glass fish-tank (dimensions 260 × 480 × 350 mm) was fixed to each of the water bath bases using silicon. The fish-tanks were fitted with lids containing a ventilation hole (2 cm²) at one end. To minimise the probability of tank movement, weighted wooden platforms were erected over the lids. Water was added to the water baths to a depth of around 200 mm, and water temperatures were controlled using aquarium heaters (Rena Cal 50W, Rena France, Anney Cedex, France). A homogenous temperature was maintained through continual water circulation using aquarium filters (2006 internal filter, Eheim, Germany). The incubation temperature of the fish-tanks, and hence the egg boxes they contained, was therefore determined by the water temperature in the water bath surrounding the tank. By the second day of incubation white spot development was apparent on either the top or the side of the majority of eggs, indicating development was underway.

2.2. Incubation conditions

A temperature probe (Grant Instruments, Cambridge, UK) was inserted into one of the boxes in each incubator via the lid to allow regular monitoring (Squirrel temperature meter model SQ8-4U, Grant Instruments, Cambridge, UK). Tank temperatures were also logged at hourly intervals in the centre of each tank (outside the egg boxes) using a pre-calibrated Tiny-Tag datalogger (Gemini Dataloggers, Cambridge, UK). Calibration was performed by positioning the dataloggers inside a Styrofoam box within an incubator. Accuracies of the dataloggers were checked against a UKAS certified thermometer over a range of temperatures between 20.0 and 35.0 °C. We aimed to incubate at 28.0, 30.0 and 32.0 °C. Actual mean temperatures (±SD) recorded inside each tank were 27.6 °C (±0.4), 30.0 °C (±0.5) and 31.8 °C (±0.4). Due to space constraints, it was not possible to position dataloggers inside the egg boxes during incubation.

Heaters and ventilation holes were located at opposite ends of the water bath. Weekly rotations of box positions were carried out to minimise potential position effects within each treatment. Distilled water was added in 5 ml aliquots periodically to each egg box to counteract evaporative water loss.

2.3. Incubation duration

The start of incubation was defined as 11 am in the morning after the eggs were laid, the approximate time they were set in the incubators. When the anticipated hatching date approached, incubators were checked at least twice daily, and the numbers of hatchlings hatched or in the process of hatching were recorded.
2.4. Hatching success and observation of hatchlings

Following complete emergence of the hatchling from the egg, empty shells were removed to provide more space. External yolk sac contents typically required 12–24 h for complete absorption. The following morning hatchlings were transferred to nesting beach sand (dampened with distilled water) and maintained at 30.0 °C, undisturbed and under darkened conditions, until evening. Hatchling straight carapace length and widths were recorded (Vernier callipers, AR/CAL 6901-SE, Camlab, Cambridge, UK), together with body mass to the nearest 0.01 g by electronic balance. Prior to the release vertebral carapace scutes were counted to assess the frequency of developmental abnormalities at each temperature. The normal arrangement is 5 vertebral scutes (Pritchard and Mortimer, 1999). All hatchlings were then released on to the nesting beach.

2.5. Respirometry

VO2 and VCO2 were measured with an open-flow respirometry system (Arch et al., 2006). Air was drawn from outside the building and dried over silica gel, passed into a pump, re-dried and passed through a Wright's flow meter (Zeal Group, London, UK), where air again became saturated with water. The air then passed into the respirometry chamber containing the eggs. During respirometry the eggs remained in boxes but the lids were removed. The respirometry chamber (a polycarbonate IP67 standard enclosure, 250×175×150 mm) was submerged in a water bath maintained at the same temperature that the eggs were incubated. On leaving the enclosure, the air was re-dried and passed through a Servomex Xenta 4100 gas purity analyser, where O2 and CO2 concentrations were logged at 60-second intervals over a and passed through a Servomex Xenta 4100 gas purity analyser, where O2 and CO2 concentrations were logged at 60-second intervals over a following the addition of the eggs from the analyses.

VO2 and VCO2 were therefore calculated by linear interpolation of the values on each day. To calculate total energy expenditure we needed to know the metabolism on each day from the 30.0 and 31.8 °C treatments. To calculate total energy expenditure across the entire incubation. Three different energy equivalents were used in the calculation of DEE, described as follows:

Method 1

When protein metabolism occurs, the use of a fixed RQ of 0.8 (producing an energy equivalent of 20.1 J/ml−1 O2) has been suggested (Brody, 1945; McDonald, 1976; Gessaman and Nagy, 1988). Energy expenditure was therefore calculated as:

\[\Sigma VO_2 (ml/egg/day) \times 20.1 \]

Method 2

Following the methodology adopted in previous studies (e.g. Booth and Astill, 2001) an energy equivalent of 19.7 J/ml−1 O2 was used. Total energy expenditure at each incubation temperature was calculated using the following Equation:

\[\Sigma VO_2 (ml/egg/day) \times 19.7 \]

Method 3

Through the measurement of VO2 and VCO2, RQs were determined following each respirometry measurement using the equation:

\[RQ = \frac{VCO_2}{VO_2} \]

(Kleiber, 1987). Actual energy equivalents in kcal (K) were calculated from these RQ values using the Weir Equation (Weir, 1949; K = 3.941 + (1.1 (RQ)) and converted to joules (4.1868 kJ/kcal; Bartholemeuw, 1982). Energy expenditure was then calculated as:

\[\Sigma VO_2 (ml/egg/day) \times K \]

3. Results

3.1. Incubation duration

High, low and intermediate temperatures generated markedly different incubation durations, higher temperatures resulting in shorter incubation durations (Table 1). Hatching was asynchronous. Mean incubation durations for each temperature were calculated from incubation durations for individual eggs in all three boxes, except at 31.8 °C where results were taken from Box 3 only. At this temperature, Boxes 1 and 2 hatched between 21/09/02 18:35 and 23/09/02 06:10, therefore incubation durations could not be accurately calculated.

3.2. Hatching success and hatching body size

At each incubation temperature 1 of the 30 eggs failed to hatch, giving a hatching success rate of 96.7%. Unhatched eggs were opened at 68–70 days incubation, and showed no visible signs of embryonic development. As these eggs probably made a negligible contribution to total respiration, calculations of VO2 and VCO2 for these boxes were based on 9 rather than 10 eggs. Summary statistics for egg and hatching measurements are detailed in Table 1. A significant clutch effect on the initial egg mass was apparent, with eggs from Clutch 2 (Box 3, mean 31.86 g) having significantly heavier eggs than Clutch 1 (Boxes 1 and 2, mean 29.57 g; one-way ANOVA, F = 61.99, p < 0.001, n = 87 eggs). Between temperature treatments there were no significant differences in egg mass (F = 0.20, p = 0.05, n = 87). Analyses of temperature effects on hatching body size were carried out using General Linear Modelling, with temperature treatment as a factor and clutch as a nested factor. Neither factor had a significant effect on hatching body mass (n = 87 hatchlings). Clutch had no effect on carapace length, but hatchlings from lower temperatures had slightly
Method 3 (J/egg) 34963 J 33403 J 32107 J

Method 2 (J/egg) 35003 J 33088 J 31786 J

Method 1 (J/egg) 35714 J 33760 J 32431 J

Total energy expenditure

Total VO2 and VCO2

Peak VO2 and VCO2

Time of peak (% incubation) 77.8 79.6 86.7

VCO2 (ml/egg) 1226 ml 1235 ml 1191 ml

VO2 (ml/egg) 1777 ml 1680 ml 1613 ml

VCO2 (ml/egg) 1226 ml 1235 ml 1191 ml

Mean incubation duration (days) 62.53 (±0.51) 49.08 (±0.53) 44.87 (±0.66)

Mean hatchling carapace width (cm) 3.26 (±0.08) 3.20 (±0.10) 3.19 (±0.11)

Mean hatchling carapace length (cm) 4.29 (±0.09) 4.24 (±0.10) 4.22 (±0.10)

Mean hatchling mass (g) 16.74 (±0.62) 30.21 (±1.65) 30.31 (±1.79)

Mean hatching mass (g) 16.74 (±0.82) 16.72 (±1.02) 16.59 (±0.90)

Mean hatching carapace length (cm) 4.29 (±0.09) 4.24 (±0.10) 4.22 (±0.10)

Mean hatching carapace width (cm) 3.26 (±0.08) 3.20 (±0.10) 3.19 (±0.11)

Incubation duration

Mean incubation duration (days) 62.53 (±0.51) 49.08 (±0.53) 44.87 (±0.66)

Table 1

Mean (± SD) values for initial egg mass and body mass, carapace length and carapace width for hatchlings, and incubation duration for each temperature treatment.

<table>
<thead>
<tr>
<th>Incubation temperature</th>
<th>27.6 °C</th>
<th>30.0 °C</th>
<th>31.8 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg and hatching size parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean egg mass (g)</td>
<td>30.48 (± 1.62)</td>
<td>30.21 (± 1.65)</td>
<td>30.31 (± 1.79)</td>
</tr>
<tr>
<td>Mean hatching mass (g)</td>
<td>16.74 (± 0.82)</td>
<td>16.72 (± 1.02)</td>
<td>16.59 (± 0.90)</td>
</tr>
<tr>
<td>Mean hatching carapace length (cm)</td>
<td>4.29 (± 0.09)</td>
<td>4.24 (± 0.10)</td>
<td>4.22 (± 0.10)</td>
</tr>
<tr>
<td>Mean hatching carapace width (cm)</td>
<td>3.26 (± 0.08)</td>
<td>3.20 (± 0.10)</td>
<td>3.19 (± 0.11)</td>
</tr>
</tbody>
</table>

3.5. RQ values and patterns of substrate oxidation

Around 30% of the RQ values were found to be outside the normal range of 0.7–1.0, with abnormal values occurring primarily at the start (RQ>1) and end (RQ<0.7) of the measured period of incubation. Fig. 2 illustrates actual RQ values (n = 86) calculated for each respirometry measurement, and shows an apparent decline in RQ over time. To provide more insight into the nature of this decline we used General Linear Modelling, with loge RQ as the response variable, day as a covariate, temperature as a factor and the interaction effect between these two variables. RQ was not related to temperature (F = 0.12, p>0.05) and there was no interaction effect between the temperature and the day of incubation on RQ (F = 2.50, p>0.05). A significant effect of day was found, showing a decline in RQ as the incubation progressed (F = 207.43, T = −14.40, p<0.001, n = 86). As no temperature effect was detectable, RQ values from each temperature treatment were pooled for all subsequent calculations.

Quadratic regression confirmed that day was a significant predictor of RQ (r² = 0.76, F = 133.304, p<0.001, n = 86). Suggesting a temporal shift in the nature of the substrate oxidation that may have occurred. From the existing dataset, using daily averages where appropriate, fitted RQ values were generated for days 1–63 of incubation. Between days 1–11 RQ values exceeded 1, declining to 0.81 by day 26, and 0.71 by day 38. Fitted RQ values were below 0.70 for the remainder of the incubation.

4. Discussion

When laid, reptile eggs contain energy deposited in the yolk. Most of this energy will be converted to the hatching, and a proportion will be used to support the energetic costs of development (Vleck and...
4.2. Patterns of VO₂ and VCO₂

Most common morphological abnormalities in sea turtles, but typical Island (Booth and Astill, 2001) and leatherback turtle embryos described for the loggerhead turtle (Deeming and Ferguson, 1991). A moderate decline in the embryonic growth rate (Ackerman, 1981a) did not demonstrate a marked decline towards hatching, despite a difference in VO₂ and VCO₂ at all temperatures. We did not find differences in body mass. In birds and oviparous reptiles, the frequency of developmental abnormalities tends to be more common at incubation temperatures towards the extremities of their range (Deeming and Ferguson, 1991). Here we have demonstrated that the incidence of abnormalities in hatching carapace scute patterns increased at higher incubation temperatures. Miller (1985) noted that supernumery was one of the most common morphological abnormalities in sea turtles, but typical frequencies were lower than observed here.

4.3. Costs of development

Fig. 2. Calculated RQ for days on which VO₂ and VCO₂ were measured in eggs incubated at 27.6, 30.0 and 31.8 °C.

Asynchronous rates of sea turtle development may occur due to the thermal gradients within the nest (Houghton and Hays, 2001). Thompson (1993) proposed that the peaked pattern of oxygen consumption might arise because, although embryos had effectively stopped growing, delayed hatching might be beneficial in encouraging hatching synchrony. Our study does not lend strong support to this theory as, despite the peaked pattern we have observed, studies on the emergence patterns of the loggerhead turtles in Kyparissia Bay (Rees, 2005) and the nearby island of Cephalonia (Houghton and Hays, 2001) have described them as asynchronous.

Dietz et al. (1998) proposed that, in the bird embryos, a plateau in metabolic rate is achieved close to the end of incubation in response to the increased synthesis efficiency, rather than because of a markedly reduced embryonic growth rate. Dietz et al. (1998) suggested that the plateau in energy expenditure corresponded with a period of fat deposition in the embryo. If the timing of fat deposition was similar in the loggerhead embryos, increased synthesis efficiency may have been achieved through the oxidation of fat, as suggested by the RQ values.

4.3. Costs of development

Regardless of the method used to calculate energy expenditure, the same general conclusion for this study can be drawn. Despite higher rates of VO₂ at higher incubation temperatures, a greater amount of total energy is required for the incubation at lower temperatures. This conclusion parallels findings in the bird embryos, and probably occurs because slower growth and longer incubation durations lead to increased tissue maintenance costs (Vleck and Vleck, 1987).

The difference in oxygen consumption between 31.8 and 27.6 °C was around 10%, or equivalent to about 3217 J. Assuming a post-hatching oxygen consumption rate of 0.16 mlO₂/g/min (Wyneken, 1997) is similar across all incubation temperatures, this additional energy could sustain hatchlings from higher temperatures for approximately 10 additional hours. Booth and Astill (2001) found the total oxygen consumption of green turtle embryos at 26.0 °C was approximately 5% greater than at 30.0 °C. In Emydura signata, Booth (1998a) found an 11% increase in oxygen consumed at 24 °C, but no significant difference between 26, 28, and 31 °C. It was concluded that higher costs at 24 °C occurred as this was close to the lower critical temperature at which development could proceed. It is possible that a constant temperature of 27.6 °C is close to the lower limits of incubation temperature for the loggerheads in Kyparissia Bay. Certainly the corresponding incubation duration (62.5 days) approaches the maximum reported for this area (67 days, Margarioulius et al., 2003). Assuming egg composition does not vary seasonally, the implications from our findings are that hatchlings emerging from the lower incubation temperatures would be expected to have less energy available in the form of residual yolk. Although in this study the effect of the incubation temperature on hatching carapace dimensions was small, and no significant effect on the hatching body mass was found, the incubation temperature has been widely reported to influence the hatching phenotype. For example, green turtle hatchlings developing on cooler nesting beaches on Ascension Island are larger, heavier, and have greater hind and fore-flipper areas than those developing on warmer beaches (Glen et al., 2003), the characteristics which may influence swimming ability. Consequently available energy resources for offshore swimming may interact with hatching phenotype to impact fitness.

The method used to calculate energy expenditure influenced the result to a small extent. Recent studies have favoured the use of a fixed RQ value to calculate energy expenditure (e.g. Booth and Astill, 2001), which gives the apparently complex nature of substrate metabolism would appear to currently provide the most reliable estimate. Gessaman and Nagy (1988) assessed the amount of error incurred by failing to correct for the metabolism of protein. When measured or assumed RQ values were used to calculate energy equivalents and
energy expenditure for ureotelic animals oxidising mixed substrates, they estimated that the maximum error incurred was less than 3%, providing the carbohydrate contribution was low.

Despite similar incubation durations, it is notable that the (mass-specific) peak rate of oxygen consumption was higher, and total costs of development at 30.0 °C more expensive, in the current study than that previously reported for the loggerhead turtles (Ackerman, 1981a). When energy expenditure was calculated (assuming an energy equivalent of 19.7 J/mlO2) and scaled to the initial egg mass, the total was 22% higher in this study. It is unclear whether this infers that the peaked pattern is more expensive, or reflects inter-population differences in the rate of the oxygen consumption, as has been previously suggested for the green turtle (Booth and Astill, 2001). If production costs are scaled to the mass of the hatching produced, it is apparent that eggs in our study produced relatively large hatchlings, reducing the difference to 14%.

The mean energy content of a green turtle egg from Costa Rica is 259.7 kJ (Bjorndal, 1995). Assuming an energy equivalent of 19.7 J/ml O2, an embryo from this egg would therefore use about 61.9 kJ, or 24%, of the total energy during development (Ackerman, 1981a). Hays and Speakman (1991) estimated the energy content of an average sized Greek loggerhead egg to be 165 kJ, presuming that the volume-specific energy content of an egg has little inter-specific or inter-population variation. Assuming an energy equivalent of 19.7 J/ml O2, our results suggest that Kyparissia Bay embryos expend between 19 and 22% of this energy on developmental costs.

4.4. RQ values and patterns of substrate oxidation

The significant decline in RQ during the course of incubation would suggest that the energy sources within the egg were not oxidised proportionately throughout incubation. Although determining the RQ does not allow us to ascertain what the relative proportions of each substrate might be, one possible interpretation is that carbohydrate was oxidised initially, followed by protein and ultimately fat. The use of protein as a metabolic substrate in loggerhead embryos has been previously indicated through the measurement of urea excretion during incubation (Nakamura, 1929; cited from Wilhoft, 1986).

An alternative scenario is that the declining RQ indicates a shift from carbohydrate to fat oxidation. If either of these scenarios were correct, we could speculate that the temporal effect on the nature of the oxidation substrate would result in embryos with longer incubation durations deriving a greater amount of energy from the oxidation of fat. High RQ values at the start of incubation could be explained by low O2 conductance due to the higher water content of the eggshell during early incubation (Deeming and Thompson, 1991). Thompson and Stewart (1997) also recorded high RQ values (greater than 1) at the start of the incubation in the lizard Eumeces fasciatus, and suggested this may be due to the secretion of the CO2 stored during formation of the eggshell. The authors determined that during the 25-day incubation period, lizard embryos demonstrated an initially high RQ, which declined until day 15 then levelled to a mean 0.75, suggesting a combination of protein and fat oxidation.

Towards the end of the incubation, we recorded RQ values below that expected from the oxidation of fat. Possible explanations include CO2 retention or the synthesis of carbohydrate from fat (Kleiber, 1987). Glycogen formation has been a suggested explanation for the low RQ values obtained from the bird embryos during late incubation (Freeman, 1969). Although glycogen comprises a more bulky form of energy storage, it is a means by which energy can become rapidly available, and can be used to provide energy under anaerobic conditions (Schmidt-Nielsen, 1977). During hatching and emergence from the nest the availability of such an energy source would clearly be beneficial.

During this study eggs were incubated under artificial conditions using constant temperatures. Sea turtle eggs incubating under natural conditions may be subjected to fluctuating temperatures, for example as a result of sea water over-wash, rainfall or diel patterns (Kaska et al., 1998, Broderick et al., 2001, Houghton et al., 2007). The implications of these temperature excursions for the metabolic rate of naturally incubating sea turtle eggs are unknown, but the results presented here probably still have wide applicability. We also acknowledge that during this experiment measurements were made using open-flow respirometry, and eggs were therefore not limited by available oxygen. These conditions may differ to the natural nest environment, where eggs incubate in a sand medium where gas diffusion rates may be reduced to 6–12% that of air (Ackerman, 1977). Our results therefore cannot predict the outcome of the combined effects of the incubation temperature and the limited oxygen diffusion rates on the embryonic metabolism in natural nests.

As lower incubation temperatures generate male embryos, we cannot distinguish between the sex and the temperature effects, or exclude the possibility that development at lower temperatures was more costly due to the production of the male hatchlings. The pivotal temperature for the loggerhead population in Kyparissia Bay is 29.3 °C (Mrosovsky et al., 2002), indicating the lowest incubation temperature used here produced primarily males, the highest temperature mainly females, and the intermediate temperature probably a mixture of both sexes. Results from the snapping turtle Chelydra serpentina suggest that it is temperature, rather than sex, which affects the amount of the residual yolk in emerging hatchlings (Rhen and Lang, 1999). In our study, regardless of the causative factor, it is apparent that developmental costs for a male embryo are more expensive. The biological significance of the subtle differences in energy utilisation and body size suggested by our study will depend on whether these translate into viability differences, during early or later life-history stages.

Acknowledgements

We are very grateful to ARCHELON, the Sea Turtle Protection Society of Greece, for advice and assistance with all aspects of this study. On site, Alan Rees, Maria Georgomimitrou and the volunteers of the Kyparissia Bay project were particularly helpful. We also thank Linde Hellas for donating gas canisters and calibration gases, the Hellenic National Meteorological Service for providing air pressure data, and David Booth, Roland Digby, and Nicholas Mrosovsky for advice on egg incubation.

References

